1/( Log_A Bc + 1) + 1/(Log_B Ca + 1) + 1/ ( Log_C Ab + 1 ) – Mathematics | Shaalaa.com
Sum
Evaluate :`1/( log_a bc + 1) + 1/(log_b ca + 1) + 1/ ( log_c ab + 1 )`
Solution
⇒ `1/( log_a bc + 1) + 1/(log_b ca + 1) + 1/ ( log_c ab + 1 )`
⇒`1/( log_a bc + log_a a) + 1/(log_b ca +log_b b) + 1/ ( log_c ab + log_c c )`
⇒ `1/( log_a abc ) + 1/(log_b abc) + 1/ ( log_c abc )` …[∵ loga b + loga c = loga bc ]
⇒ `(1) /[( log abc ) / ( loga )]` + `(1) /[( log abc ) / ( logb )]` + `(1) /[( log abc ) / ( logc )]`
⇒ ` ( log a + log b + log c) / ( log abc) `
⇒ `( log abc) / ( log abc) ` …∵[ loga b + loga c = loga bc ]
⇒ 1
Concept: More About Logarithm
Is there an error in this question or solution?
APPEARS IN
Selina Concise Mathematics Class 9 ICSE