Antigen–Antibody Complexes

  • Abbas AK, Lichtman AH, Pillai S (2014) Basic immunology: functions and disorders of the immune system. Elsevier Health Sciences

  • Abbott WM, Damschroder MM, Lowe DC (2014) Current approaches to fine mapping of antigen–antibody interactions. Immunology 142(4):526–535

  • Adachi M, Kurihara Y, Nojima H, Takeda-Shitaka M, Kamiya K, Umeyama H (2003) Interaction between the antigen and antibody is controlled by the constant domains: normal mode dynamics of the HEL–hyHEL-10 complex. Protein Sci 12(10):2125–2131

  • Ahmad TA, Eweida AE, Sheweita SA (2016) B-cell epitope mapping for the design of vaccines and effective diagnostics. Trials Vaccinol 5:71–83

  • Al-Lazikani B, Lesk AM, Chothia C (1997) Standard conformations for the canonical structures of immunoglobulins. J Mol Biol 273(4):927–948

  • Arnold JN, Wormald MR, Sim RB, Rudd PM, Dwek RA (2007) The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu Rev Immunol 25:21–50

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28(1):235–242

  • Berzofsky JA, Schechter AN (1981) The concepts of crossreactivity and specificity in immunology. Mol Immunol 18(8):751–763

  • Bhat TN, Bentley GA, Boulot G, Greene MI, Tello D, Dall’Acqua W, Souchon H, Schwarz FP, Mariuzza RA, Poljak RJ (1994) Bound water molecules and conformational stabilization help mediate an antigen-antibody association. Proc Natl Acad Sci USA 91(3):1089–1093

  • Birtalan S, Zhang Y, Fellouse FA, Shao L, Schaefer G, Sidhu SS (2008) The intrinsic contributions of tyrosine, serine, glycine and arginine to the affinity and specificity of antibodies. J Mol Biol 377(5):1518–1528

  • Boekema EJ, Folea M, Kouřil R (2009) Single particle electron microscopy. Photosynth Res 102(2–3):189

  • Boes M (2000) Role of natural and immune IgM antibodies in immune responses. Mol Immunol 37(18):1141–1149

  • Bogan AA, Thorn KS (1998) Anatomy of hot spots in protein interfaces. J Mol Biol 280(1):1–9

  • Borghesi L, Milcarek C (2006) From B cell to plasma cell. Immunol Res 36(1–3):27–32

  • Bostrom J, Yu S-F, Kan D, Appleton BA, Lee CV, Billeci K, Man W, Peale F, Ross S, Wiesmann C (2009) Variants of the antibody herceptin that interact with HER2 and VEGF at the antigen binding site. Science 323(5921):1610–1614

  • Bouvet J-P, Marone G (2007) Protein Fv: an endogenous immunoglobulin superantigen and superallergen. Chem Immunol Allergy 93:58–76. Karger Publishers

  • Bouvet JP, Pires R, Lunel-Fabiani F, Crescenzo-Chaigne B, Maillard P, Valla D, Opolon P, Pillot J (1990) Protein F. A novel F(ab)-binding factor, present in normal liver, and largely released in the digestive tract during hepatitis. J Immunol 145(4):1176–1180

  • Braden BC, Fields BA, Poljak RJ (1995) Conservation of water molecules in an antibody–antigen interaction. J Mol Recognit 8(5):317–325

  • Burton OT, Oettgen HC (2011) Beyond immediate hypersensitivity: evolving roles for IgE antibodies in immune homeostasis and allergic diseases. Immunol Rev 242(1):128–143

  • Capra JD, Kehoe JM (1974) Variable region sequences of five human immunoglobulin heavy chains of the VHIII subgroup: definitive identification of four heavy chain hypervariable regions. Proc Natl Acad Sci USA 71(3):845–848

  • Casadevall A, Janda A (2012) Immunoglobulin isotype influences affinity and specificity. Proc Natl Acad Sci USA 109(31):12272–12273

  • Cauerhff A, Goldbaum FA, Braden BC (2004) Structural mechanism for affinity maturation of an anti-lysozyme antibody. Proc Natl Acad Sci 101(10):3539–3544

  • Cavacini LA, Kuhrt D, Duval M, Mayer K, Posner MR (2003) Binding and neutralization activity of human IgG1 and IgG3 from serum of HIV-infected individuals. AIDS Res Hum Retroviruses 19(9):785–792

  • Chen JZ, Settembre EC, Aoki ST, Zhang X, Bellamy AR, Dormitzer PR, Harrison SC, Grigorieff N (2009a) Molecular interactions in rotavirus assembly and uncoating seen by high-resolution cryo-EM. Proc Natl Acad Sci USA 106(26):10644–10648

  • Chen K, Xu W, Wilson M, He B, Miller NW, Bengten E, Edholm E-S, Santini PA, Rath P, Chiu A (2009b) Immunoglobulin D enhances immune surveillance by activating antimicrobial, proinflammatory and B cell–stimulating programs in basophils. Nat Immunol 10(8):889

  • Chong LT, Duan Y, Wang L, Massova I, Kollman PA (1999) Molecular dynamics and free-energy calculations applied to affinity maturation in antibody 48G7. Proc Natl Acad Sci USA 96(25):14330–14335

  • Chothia C, Lesk AM (1987) Canonical structures for the hypervariable regions of immunoglobulins. J Mol Biol 196(4):901–917

  • Chothia C, Lesk AM, Tramontano A, Levitt M, Smith-Gill SJ, Air G, Sheriff S, Padlan EA, Davies D, Tulip WR (1989) Conformations of immunoglobulin hypervariable regions. Nature 342(6252):877

  • Chruszcz M, Wlodawer A, Minor W (2008) Determination of protein structures—a series of fortunate events. Biophys J 95(1):1–9

  • Chruszcz M, Pomes A, Glesner J, Vailes LD, Osinski T, Porebski PJ, Majorek KA, Heymann PW, Platts-Mills TA, Minor W, Chapman MD (2012) Molecular determinants for antibody binding on group 1 house dust mite allergens. J Biol Chem 287(10):7388–7398

  • Dalkas GA, Teheux F, Kwasigroch JM, Rooman M (2014) Cation–π, amino–π, π–π, and H‐bond interactions stabilize antigen–antibody interfaces. Proteins: Struct Funct Bioinform 82(9):1734–1746

  • Davies DR, Sheriff S, Padlan EA (1988) Antibody-antigen complexes. J Biol Chem 263(22):10541–10544

  • De Genst E, Silence K, Ghahroudi MA, Decanniere K, Loris R, Kinne J, Wyns L, Muyldermans S (2005) Strong in vivo maturation compensates for structurally restricted H3 loops in antibody repertoires. J Biol Chem 280(14):14114–14121

  • De Genst E, Silence K, Decanniere K, Conrath K, Loris R, Kinne J, Muyldermans S, Wyns L (2006) Molecular basis for the preferential cleft recognition by dromedary heavy-chain antibodies. Proc Natl Acad Sci USA 103(12):4586–4591

  • DeKosky BJ, Lungu OI, Park D, Johnson EL, Charab W, Chrysostomou C, Kuroda D, Ellington AD, Ippolito GC, Gray JJ, Georgiou G (2016) Large-scale sequence and structural comparisons of human naive and antigen-experienced antibody repertoires. Proc Natl Acad Sci 113(19):E2636–2645

  • Dingjan T, Spendlove I, Durrant LG, Scott AM, Yuriev E, Ramsland PA (2015) Structural biology of antibody recognition of carbohydrate epitopes and potential uses for targeted cancer immunotherapies. Mol Immunol 67(2):75–88

  • Donnarumma D, Bottomley MJ, Malito E, Settembre E, Ferlenghi I, Cozzi R (2015) Structural biology in vaccine research. In: Advanced vaccine research methods for the decade of vaccines, p 103

  • Durandy A (2003) Mini-review Activation-induced cytidine deaminase: a dual role in class-switch recombination and somatic hypermutation. Eur J Immunol 33(8):2069–2073

  • Elek S, Smith BK, Highman W (1964) The interaction of antigen and antibody in agglutination: a study by electron microscopy. Immunology 7(5):570

  • Fanning SW, Horn JR (2011) An anti-hapten camelid antibody reveals a cryptic binding site with significant energetic contributions from a nonhypervariable loop. Protein Sci 20(7):1196–1207

  • Fraser JD (2011) Clarifying the mechanism of superantigen toxicity. PLoS Biol 9(9):e1001145

  • Freeman CL, Sehn L (2018) Anti-CD20 directed therapy of B cell lymphomas: are new agents really better? Curr Oncol Rep 20(12):103

  • Gala FA, Morrison SL (2002) The role of constant region carbohydrate in the assembly and secretion of human IgD and IgA1. J Biol Chem 277(32):29005–29011

  • Geisberger R, Lamers M, Achatz G (2006) The riddle of the dual expression of IgM and IgD. Immunology 118(4):429–437

  • Glesner J, Vailes LD, Schlachter C, Mank N, Minor W, Osinski T, Chruszcz M, Chapman MD, Pomes A (2017) Antigenic determinants of Der p 1: specificity and cross-reactivity associated with IgE antibody recognition. J Immunol 198(3):1334–1344

  • Glesner J, Kapingidza AB, Godzwon M, Offermann LR, Mueller GA, DeRose EF, Wright P, Richardson CM, Woodfolk JA, Vailes LD, Wünschmann S, London RE, Chapman MD, Ohlin M, Chruszcz M, Pomés A (2019) Human IgE antibody binding site on Der p 2 for the design of a recombinant allergen for immunotherapy. J Immunol 203(9):2545–2556

  • Gounni AS, Lamkhioued B, Ochiai K, Tanaka Y, Delaporte E, Capron A, Kinet J-P, Capron M (1994) High-affinity IgE receptor on eosinophils is involved in defence against parasites. Nature 367(6459):183

  • Greenberg AS, Avila D, Hughes M, Hughes A, Mckinney EC, Flajnik MF (1995) A new antigen receptor gene family that undergoes rearrangement and extensive somatic diversification in sharks. Nature 374(6518):168–173

  • Grönwall C, Vas J, Silverman GJ (2012) Protective roles of natural IgM antibodies. Front Immunol 3:66

  • Gruber K, Zhou B, Houk KN, Lerner RA, Shevlin CG, Wilson IA (1999) Structural basis for antibody catalysis of a disfavored ring closure reaction. Biochemistry 38(22):7062–7074

  • Haidar JN, Yuan QA, Zeng L, Snavely M, Luna X, Zhang H, Zhu W, Ludwig DL, Zhu Z (2012) A universal combinatorial design of antibody framework to graft distinct cdr sequences: a bioinformatics approach. Proteins: Struct Funct Bioinform 80(3):896–912

  • Haji-Ghassemi O, Blackler RJ, Martin Young N, Evans SV (2015) Antibody recognition of carbohydrate epitopes. Glycobiology 25(9):920–952

  • Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hamers C, Songa EB, Bendahman N, Hamers R (1993) Naturally occurring antibodies devoid of light chains. Nature 363(6428):446–448

  • Harmsen MM, Ruuls RC, Nijman IJ, Niewold TA, Frenken LGJ, de Geus B (2000) Llama heavy-chain V regions consist of at least four distinct subfamilies revealing novel sequence features. Mol Immunol 37(10):579–590

  • Harris LJ, Larson SB, Hasel KW, McPherson A (1997) Refined structure of an intact IgG2a monoclonal antibody. Biochemistry 36(7):1581–1597

  • Harris LJ, Skaletsky E, McPherson A (1998) Crystallographic structure of an intact IgG1 monoclonal antibody. J Mol Biol 275(5):861–872

  • Henry KA, MacKenzie CR (2018) Antigen recognition by single-domain antibodies: structural latitudes and constraints. MAbs 10(6):815–826

  • Hewat EA, Verdaguer N, Fita I, Blakemore W, Brookes S, King A, Newman J, Domingo E, Mateu MG, Stuart DI (1997) Structure of the complex of an Fab fragment of a neutralizing antibody with foot-and-mouth disease virus: positioning of a highly mobile antigenic loop. EMBO J 16(7):1492–1500

  • Huber R (1980) Spatial structure of immunoglobulin molecules. Klin Wochenschr 58(22):1217–1231

  • Jahnichen S, Blanchetot C, Maussang D, Gonzalez-Pajuelo M, Chow KY, Bosch L, De Vrieze S, Serruys B, Ulrichts H, Vandevelde W, Saunders M, De Haard HJ, Schols D, Leurs R, Vanlandschoot P, Verrips T, Smit MJ (2010) CXCR4 nanobodies (VHH-based single variable domains) potently inhibit chemotaxis and HIV-1 replication and mobilize stem cells. Proc Natl Acad Sci 107(47):20565–20570

  • Janeway CA Jr, Travers P, Walport M, Shlomchik MJ (2001) The structure of a typical antibody molecule. In: Immunobiology: the immune system in health and disease, 5th edn. Garland Science

  • Jeffrey PD, Bajorath J, Chang CY, Yelton D, Hellström I, Hellström KE, Sheriff S (1995) The X-ray structure of an anti-tumour antibody in complex with antigen. Nat Struct Biol 2(6):466

  • Jolles S, Sewell WA, Misbah SA (2005) Clinical uses of intravenous immunoglobulin. Clin Exp Immunol 142(1):1–11

  • Karp CL (2010) Guilt by intimate association: what makes an allergen an allergen? J Allergy Clin Immunol 125(5):955–960

  • Keskin O (2007) Binding induced conformational changes of proteins correlate with their intrinsic fluctuations: a case study of antibodies. BMC Struct Biol 7(1):31

  • Kettleborough CA, Saldanha J, Heath VJ, Morrison CJ, Bendig MM (1991) Humanization of a mouse monoclonal antibody by CDR–grafting: the importance of framework residues on loop conformation. Protein Eng Des Sel 4(7):773–783

  • Khan T, Salunke DM (2014) Adjustable locks and flexible keys: plasticity of epitope–paratope interactions in germline antibodies. J Immunol 192(11):5398–5405

  • Kholodenko RV, Kalinovsky DV, Doronin II, Ponomarev ED, Kholodenko IV (2019) Antibody fragments as potential biopharmaceuticals for cancer therapy: success and limitations. Curr Med Chem 26(3):396–426

  • King MT, Brooks CL (2018) Epitope mapping of antibody-antigen interactions with x-ray crystallography. In: Epitope Mapping Protocols. Springer, Switzerland, pp 13–27

  • Kringelum JV, Nielsen M, Padkjær SB, Lund O (2013) Structural analysis of B-cell epitopes in antibody: protein complexes. Mol Immunol 53(1–2):24–34

  • Kunik V, Ofran Y (2013) The indistinguishability of epitopes from protein surface is explained by the distinct binding preferences of each of the six antigen-binding loops. Protein Eng Des Sel 26(10):599–609

  • LeBrasseur N (2003) A view of antibody maturation. J Cell Biol 161(5):834

  • Leder P (1982) The genetics of antibody diversity. Sci Am 246(5):102–115

  • Lescar J, Pellegrini M, Souchon H, Tello D, Poljak RJ, Peterson N, Greene M, Alzari PM (1995) Crystal-structure of a cross-reaction complex between Fab F9.13.7 and guinea-fowl lysozyme. J Biol Chem 270(30):18067–18076.

  • Li Y, Lipschultz CA, Mohan S, Smith-Gill SJ (2001) Mutations of an epitope hot-spot residue alter rate limiting steps of antigen−antibody protein−protein associations. Biochemistry 40(7):2011–2022

  • Li Y, Li H, Yang F, Smith-Gill SJ, Mariuzza RA (2003) X-ray snapshots of the maturation of an antibody response to a protein antigen. Nat Struct Biol 10(6):482–488

  • Liang Y, Guttman M, Davenport TM, Hu S-L, Lee KK (2016) Probing the impact of local structural dynamics of conformational epitopes on antibody recognition. Biochemistry 55(15):2197–2213

  • Liao HX, Alam SM, Mascola JR, Robinson J, Ma BJ, Montefiori DC, Rhein M, Sutherland LL, Scearce R, Haynes BF (2004) Immunogenicity of constrained monoclonal antibody A32-human immunodeficiency virus (HIV) env gp120 complexes compared to that of recombinant HIV type 1 gp120 envelope glycoproteins. J Virol 78(10):5270–5278

  • Ludwig DL, Pereira DS, Zhu Z, Hicklin DJ, Bohlen P (2003) Monoclonal antibody therapeutics and apoptosis. Oncogene 22(56):9097–9106

  • MacCallum RM, Martin AC, Thornton JM (1996) Antibody-antigen interactions: contact analysis and binding site topography. J Mol Biol 262(5):732–745

  • MacRaild CA, Richards JS, Anders RF, Norton RS (2016) Antibody recognition of disordered antigens. Structure 24(1):148–157

  • Malhotra R, Wormald MR, Rudd PM, Fischer PB, Dwek RA, Sim RB (1995) Glycosylation changes of IgG associated with rheumatooid arthritis can activate complement via the mannose-binding protein. Nat Med 1(3):237

  • Mari A, Iacovacci P, Afferni C, Barletta B, Tinghino R, Di Felice G, Pini C (1999) Specific IgE to cross-reactive carbohydrate determinants strongly affect the in vitro diagnosis of allergic diseases. J Allergy Clin Immunol 103(6):1005–1011

  • Mariuzza RA, PoIjak RJ (1993) The basics of binding: mechanisms of antigen recognition and mimicry by antibodies. Curr Opin Immunol 5(1):50–55

  • Market E, Papavasiliou FN (2003) V(D)J recombination and the evolution of the adaptive immune system. PLoS Biol 1(1):e16

  • Marone G (2007) Superantigens and superallergens, vol 93. Karger Medical and Scientific Publishers, Basel

  • Marone G, Spadaro G, Liccardo B, Rossi FW, D’Orio C, Detoraki A (2006) Superallergens: a new mechanism of immunologic activation of human basophils and mast cells. Inflamm Res 55(Suppl 1):S25–27

  • Maverakis E, Kim K, Shimoda M, Gershwin ME, Patel F, Wilken R, Raychaudhuri S, Ruhaak LR, Lebrilla CB (2015) Glycans in the immune system and the altered glycan theory of autoimmunity: a critical review. J Autoimmun 57:1–13

  • Meulenbroek LA, de Jong RJ, den Hartog Jager CF, Monsuur HN, Wouters D, Nauta AJ, Knippels LM, van Neerven RJ, Ruiter B, Leusen JH (2013) IgG antibodies in food allergy influence allergen–antibody complex formation and binding to B cells: a role for complement receptors. J Immunol 191(7):3526–3533

  • Mimura Y, Church S, Ghirlando R, Ashton P, Dong S, Goodall M, Lund J, Jefferis R (2000) The influence of glycosylation on the thermal stability and effector function expression of human IgG1-Fc: properties of a series of truncated glycoforms. Mol Immunol 37(12–13):697–706

  • Mimura Y, Sondermann P, Ghirlando R, Lund J, Young SP, Goodall M, Jefferis R (2001) Role of oligosaccharide residues of IgG1-Fc in FcγRIIb binding. J Biol Chem 276(49):45539–45547

  • Mitchell LS, Colwell LJ (2018) Analysis of nanobody paratopes reveals greater diversity than classical antibodies. Protein Eng Des Sel 31(7–8):267–275

  • Mitropoulou AN, Bowen H, Dodev TS, Davies AM, Bax HJ, Beavil RL, Beavil AJ, Gould HJ, James LK, Sutton BJ (2018) Structure of a patient-derived antibody in complex with allergen reveals simultaneous conventional and superantigen-like recognition. Proc Natl Acad Sci 115(37):E8707–E8716

  • Moalli F, Doni A, Deban L, Zelante T, Zagarella S, Bottazzi B, Romani L, Mantovani A, Garlanda C (2010) Role of complement and Fcγ receptors in the protective activity of the long pentraxin PTX3 against aspergillus fumigatus. Blood 116(24):5170–5180

  • Muyldermans S, Atarhouch T, Saldanha J, Barbosa JA, Hamers R (1994) Sequence and structure of VH domain from naturally occurring camel heavy chain immunoglobulins lacking light chains. Protein Eng 7(9):1129–1135

  • Narayanan A, Sellers BD, Jacobson MP (2009) Energy-based analysis and prediction of the orientation between light- and heavy-chain antibody variable domains. J Mol Biol 388(5):941–953

  • Nelson AL Antibody fragments: hope and hype. In: MAbs, 2010. vol 1. Taylor & Francis, pp 77–83

  • Nimmerjahn F, Ravetch JV (2005) Divergent immunoglobulin G subclass activity through selective Fc receptor binding. Science 310(5753):1510–1512

  • North B, Lehmann A, Dunbrack RL Jr (2011) A new clustering of antibody CDR loop conformations. J Mol Biol 406(2):228–256

  • Oettgen HC, Geha RS (1999) IgE in asthma and atopy: cellular and molecular connections. J Clin Invest 104(7):829–835

  • Padlan EA (1994) Anatomy of the antibody molecule. Mol Immunol 31(3):169–217

  • Padlan EA, Silverton EW, Sheriff S, Cohen GH, Smith-Gill SJ, Davies DR (1989) Structure of an antibody-antigen complex: crystal structure of the HyHEL-10 Fab-lysozyme complex. Proc Natl Acad Sci 86(15):5938–5942

  • Padlan EA, Abergel C, Tipper J (1995) Identification of specificity-determining residues in antibodies. FASEB J. 9(1):133–139

  • Pan R, Chen Y, Vaine M, Hu G, Wang S, Lu S, Kong XP (2015) Structural analysis of a novel rabbit monoclonal antibody R53 targeting an epitope in HIV-1 gp120 C4 region critical for receptor and co-receptor binding. Emerg Microbes Infect 4(7):e44

  • Parker DC (1993) T cell-dependent B cell activation. Annu Rev Immunol 11(1):331–360

  • Peng H-P, Lee KH, Jian J-W, Yang A-S (2014) Origins of specificity and affinity in antibody–protein interactions. Proc Natl Acad Sci USA 111(26):E2656–E2665

  • Platts-Mills TA (2001) The role of immunoglobulin E in allergy and asthma. Am J Respir Crit Care Med 164 (supplement_1):S1-S5

  • Pollara J, Tay MZ (2019) Antibody-dependent cellular phagocytosis in antiviral immune responses. Front Immunol 10:332

  • Pons J, Stratton JR, Kirsch JF (2002) How do two unrelated antibodies, HyHEL‐10 and F9. 13.7, recognize the same epitope of hen egg‐white lysozyme? Protein Sci 11(10):2308–2315

  • Potocnakova L, Bhide M, Pulzova LB (2016) An introduction to B-cell epitope mapping and in silico epitope prediction. J Immunol Res 2016:6760830

  • Presta L, Shields R, O’Connell L, Lahr S, Porter J, Gorman C, Jardieu P (1994) The binding site on human immunoglobulin E for its high affinity receptor. J Biol Chem 269(42):26368–26373

  • Rafiq K, Bergtold A, Clynes R (2002) Immune complex-mediated antigen presentation induces tumor immunity. J Clin Invest 110(1):71–79

  • Raghunathan G, Smart J, Williams J, Almagro JC (2012) Antigen-binding site anatomy and somatic mutations in antibodies that recognize different types of antigens. J Mol Recognit 25(3):103–113

  • Robin G, Sato Y, Desplancq D, Rochel N, Weiss E, Martineau P (2014) Restricted diversity of antigen binding residues of antibodies revealed by computational alanine scanning of 227 antibody–antigen complexes. J Mol Biol 426(22):3729–3743

  • Rosen O, Anglister J (2009) Epitope mapping of antibody–antigen complexes by nuclear magnetic resonance spectroscopy. In: Epitope mapping protocols. Springer, Switzerland, pp 37–57

  • Rouet R, Dudgeon K, Christie M, Langley D, Christ D (2015) Fully human VH single domains that rival the stability and cleft recognition of camelid antibodies. J Biol Chem 290(19):11905–11917

  • Saphire EO, Parren PW, Pantophlet R, Zwick MB, Morris GM, Rudd PM, Dwek RA, Stanfield RL, Burton DR, Wilson IA (2001) Crystal structure of a neutralizing human IGG against HIV-1: a template for vaccine design. Science 293(5532):1155–1159

  • Schroeder HW Jr, Cavacini L (2010) Structure and function of immunoglobulins. J Allergy Clin Immunol 125(2):S41–S52

  • Sela-Culang I, Kunik V, Ofran Y (2013) The structural basis of antibody-antigen recognition. Front Immunol 4:302

  • Sheriff S, Silverton EW, Padlan EA, Cohen GH, Smith-Gill SJ, Finzel BC, Davies DR (1987) Three-dimensional structure of an antibody-antigen complex. Proc Natl Acad Sci USA 84(22):8075–8079

  • Simonelli L, Pedotti M, Bardelli M, Jurt S, Zerbe O, Varani L (2018) Mapping antibody epitopes by solution NMR spectroscopy: practical considerations. In: Epitope mapping protocols. Springer, Switzerland, pp 29–51

  • Sinha N, Smith-Gill SJ (2002) Electrostatics in protein binding and function. Curr Protein Pept Sci 3(6):601–614

  • Sinha N, Mohan S, Lipschultz CA, Smith-Gill SJ (2002) Differences in electrostatic properties at antibody-antigen binding sites: Implications for specificity and cross-reactivity. Biophys J 83(6):2946–2968

  • Skiniotis G, Southworth DR (2016) Single-particle cryo-electron microscopy of macromolecular complexes. Microscopy 65(1):9–22

  • Spiegelberg HL (1989) Biological role of different antibody classes. Int Arch Allergy Immunol 90(Suppl. 1):22–27

  • Spuergin P, Mueller H, Walter M, Schiltz E, Forster J (1996) Allergenic epitopes of bovine αs1-casein recognized by human IgE and IiG. Allergy 51(5):306–312

  • Stanfield RL, Dooley H, Flajnik MF, Wilson IA (2004) Crystal structure of a shark single-domain antibody V region in complex with lysozyme. Science 305(5691):1770–1773

  • Stanfield RL, Gorny MK, Zolla-Pazner S, Wilson IA (2006a) Crystal structures of human immunodeficiency virus type 1 (HIV-1) neutralizing antibody 2219 in complex with three different V3 peptides reveal a new binding mode for HIV-1 cross-reactivity. J Virol 80(12):6093–6105

  • Stanfield RL, Zemla A, Wilson IA, Rupp B (2006b) Antibody elbow angles are influenced by their light chain class. J Mol Biol 357(5):1566–1574

  • Stanfield RL, De Castro C, Marzaioli AM, Wilson IA, Pantophlet R (2015) Crystal structure of the HIV neutralizing antibody 2G12 in complex with a bacterial oligosaccharide analog of mammalian oligomannose. Glycobiology 25(4):412–419

  • Stavnezer J, Amemiya CT (2004) Evolution of isotype switching. In: Seminars in immunology, vol 4. Elsevier, Amsterdam, pp 257–275

  • Strohl W, Strohl L (2013) Antibody fragments as therapeutics. Therap Anti Eng: Curr Fut Adv Driv Strong Growth Area Pharm Ind 265–299

  • Theofilopoulos AN, Dixon FJ (1980) Immune complexes in human diseases: a review. Am J Pathol 100(2):529–594

  • Tian X, Vestergaard B, Thorolfsson M, Yang Z, Rasmussen HB, Langkilde AE (2015) In-depth analysis of subclass-specific conformational preferences of IgG antibodies. IUCrJ 2(1):9–18

  • Torres M, Casadevall A (2008) The immunoglobulin constant region contributes to affinity and specificity. Trends Immunol 29(2):91–97

  • Townsend CL, Laffy JM, Wu Y-CB, Silva O’Hare J, Martin V, Kipling D, Fraternali F, Dunn-Walters DK (2016) Significant differences in physicochemical properties of human immunoglobulin kappa and lambda CDR3 regions. Front Immunol 7:388

  • Tudor D, Yu H, Maupetit J, Drillet A-S, Bouceba T, Schwartz-Cornil I, Lopalco L, Tuffery P, Bomsel M (2012) Isotype modulates epitope specificity, affinity, and antiviral activities of anti–HIV-1 human broadly neutralizing 2F5 antibody. Proc Natl Acad Sci USA 109(31):12680–12685

  • Underdown BJ, Schiff JM (1986) Immunoglobulin A: strategic defense initiative at the mucosal surface. Annu Rev Immunol 4(1):389–417

  • Van Kaer L (2018) How superantigens bind MHC. J Immunol 201(7):1817–1818

  • Van Regenmortel MH (2009) What is a B-cell epitope? In: Epitope mapping protocols. Springer, Switzerland, pp 3–20

  • Van Regenmortel MH (2014) Specificity, polyspecificity, and heterospecificity of antibody-antigen recognition. J Mol Recognit 27(11):627–639

  • Vidarsson G, Dekkers G, Rispens T (2014) IgG subclasses and allotypes: from structure to effector functions. Front Immunol 5:520

  • Visciano ML, Tuen M, Gorny MK, Hioe CE (2008) In vivo alteration of humoral responses to HIV-1 envelope glycoprotein gp120 by antibodies to the CD4-binding site of gp120. Virology 372(2):409–420

  • Webster DM, Henry AH, Rees AR (1994) Antibody-antigen interactions. Curr Opin Struct Biol 4(1):123–129

  • Wedemayer GJ, Patten PA, Wang LH, Schultz PG, Stevens RC (1997) Structural insights into the evolution of an antibody combining site. Science 276(5319):1665–1669

  • Wei H, Mo J, Tao L, Russell RJ, Tymiak AA, Chen G, Iacob RE, Engen JR (2014) Hydrogen/deuterium exchange mass spectrometry for probing higher order structure of protein therapeutics: methodology and applications. Drug Discov Today 19(1):95–102

  • Weitzner BD, Dunbrack RL Jr, Gray JJ (2015) The origin of CDR H3 structural diversity. Structure 23(2):302–311

  • Wen YM, Mu L, Shi Y (2016) Immunoregulatory functions of immune complexes in vaccine and therapy. EMBO Mol Med 8(10):1120–1133

  • Wider G, Wüthrich K (1999) NMR spectroscopy of large molecules and multimolecular assemblies in solution. Curr Opin Struct Biol 9(5):594–601

  • Williams CM, Galli SJ (2000) The diverse potential effector and immunoregulatory roles of mast cells in allergic disease. J Allergy Clin Immunol 105(5):847–859

  • Wilson IA, Stanfield RL (1994) Antibody-antigen interactions: new structures and new conformational changes. Curr Opin Struct Biol 4(6):857–867

  • Wlodawer A, Minor W, Dauter Z, Jaskolski M (2008) Protein crystallography for non-crystallographers, or how to get the best (but not more) from published macromolecular structures. FEBS J 275(1):1–21

  • Wood P (2012) Human normal immunoglobulin in the treatment of primary immunodeficiency diseases. Ther Clin Risk Manag 8:157–167

  • Wu S, Avila-Sakar A, Kim J, Booth DS, Greenberg CH, Rossi A, Liao M, Li X, Alian A, Griner SL (2012) Fabs enable single particle cryoEM studies of small proteins. Structure 20(4):582–592

  • Xia Y, Pawar RD, Nakouzi AS, Herlitz L, Broder A, Liu K, Goilav B, Fan M, Wang L, Li Q-Z (2012) The constant region contributes to the antigenic specificity and renal pathogenicity of murine anti-DNA antibodies. J Autoimmun 39(4):398–411

  • Xiang J, Sha Y, Jia Z, Prasad L, Delbaere LT (1995) Framework residues 71 and 93 of the chimeric B72. 3 antibody are major determinants of the conformation of heavy-chain hypervariable loops. Elsevier

  • Xiang J, Prasad L, Delbaere LT, Jia Z (1999) Light-chain framework region residue Tyr71 of chimeric B72. 3 antibody plays an important role in influencing the TAG72 antigen binding. Protein Eng 12(5):417–421

  • Zhao L, Li J (2010) Mining for the antibody-antigen interacting associations that predict the B cell epitopes. BMC Struct Biol 10(1):S6

  • Zhu XY, Dickerson TJ, Rogers CJ, Kaufmann GF, Mee JM, McKenzie KM, Janda KD, Wilson IA (2006) Complete reaction cycle of a cocaine catalytic antibody at atomic resolution. Structure 14(2):205–216

  • Zuiderweg ER (2002) Mapping protein−protein interactions in solution by NMR spectroscopy. Biochemistry 41(1):1–7

Alternate Text Gọi ngay