Formula of cos(a+b) cos(a-b) | Formula of cos(α+β) cos(α-β) – iMath
In this post, we will establish the formula of sin(a+b) sin(a-b). Note that sin(a+b) sin(a-b) is a product of two cosine functions.
We will use the following two formulas:
cos(a+b) = cos a cos b – sin a sin b …(i)
cos(a-b) = cos a cos b + sin a sin b …(ii)
Formula of cos(a+b) cos(a-b)
cos(a+b) cos(a-b) Formula: cos(a+b) cos(a-b) = $\cos^2 a -\sin^2 b$ = $\cos^2 b -\sin^2 a$
Proof:
Using the above formulas (i) and (ii), we have
cos(a+b) cos(a-b) = (cos a cos b – sin a sin b) (cos a cos b + sin a sin b)
= $(\cos a \cos b)^2$ $-(\sin a \sin b)^2$ Here we have used the formula (x+y)(x-y)=x2-y2
= $\cos^2 a \cos^2 b -\sin^2 a \sin^2b$ $\cdots (\star)$
= $\cos^2 a (1-\sin^2 b)$ $-(1-\cos^2 a) \sin^2b$ by the formula $sin^2 \theta+\cos^2\theta=1$
= $\cos^2 a – \cos^2 a \sin^2 b$ $-\sin^2b+\cos^2 a \sin^2b$
= cos2a -sin2b
So the formula of cos(a+b) cos(a-b) is cos2a -sin2b.
Next, we will prove that cos(a+b) cos(a-b) = cos2b -sin2a.
Proof:
From $(\star)$ we have that
cos(a+b) cos(a-b) = $\cos^2 a \cos^2 b -\sin^2 a \sin^2b$
= $(1-\sin^2 a) \cos^2 b$ $-\sin^2 a (1-\cos^2b)$
= $\cos^2 b – \sin^2 a \cos^2 b$ $-\sin^2 a+ \sin^2 a \cos^2b$
= cos2b -sin2a (Proved)
Also Read:
Formula of sin(a+b)sin(a-b)
Values of sin15, cos 15, tan 15
In a similar way as above, we can prove the formula of cos(α+β) cos(α-β) = cos2α -sin2β.
Formula of cos(α+β) cos(α-β)
Prove that cos(α+β) cos(α-β) = cos2α -sin2β.
Proof:
Using the above formulas (i) and (ii), we have
sin(α+β) sin(α-β)
= (cos α cos β – sin α sin β) (cos α cos β + sin α sin β)
= $(\cos \alpha \cos \beta)^2$ $-(\sin \alpha \sin \beta)^2$ as we know (x+y)(x-y)=x2-y2
= $\cos^2 \alpha \cos^2 \beta -\sin^2 \alpha \sin^2 \beta$
= $\cos^2 \alpha (1-\sin^2 \beta)$ $-(1-\cos^2 \alpha) \sin^2 \beta$ by applying the formula of $\sin^2 \theta+\cos^2\theta=1$
= $\cos^2 \alpha – \cos^2 \alpha \sin^2 \beta$ $-\sin^2 \beta +\cos^2 \alpha \sin^2 \beta$
= cos2α -sin2β (Proved)
Example 1: Find the value of $\cos 75^\circ \cos 15^\circ$
Solution:
Let α = $45^\circ$ and β = $30^\circ$ in the above formula. Thus we obtain that
$\cos 75^\circ \cos 15^\circ$
= $\cos(45^\circ+30^\circ) \cos(45^\circ-30^\circ)$
= $\cos^2 45^\circ – \sin^2 30^\circ$
= $(\dfrac{\sqrt{3}}{2})^2 – (\dfrac{1}{2})^2$
= $\dfrac{3}{4} – \dfrac{1}{4}$
= $\dfrac{3-1}{4}$
= $\dfrac{2}{4}$
= $\dfrac{1}{2}$
So the value of $\cos 75^\circ \cos 15^\circ$ is $\dfrac{1}{2}$.
FAQs
Q1: What is the formula of cos(a+b)cos(a-b)?
Answer: The formula of cos(a+b)cos(a-b) is as follows: cos(a+b)cos(a-b) = cos2a -sin2b.
Spread the love