Formula of sin(a+b) sin(a-b) | Formula of sin(α+β) sin(α-β) – iMath

In this post, we will establish the formula of sin(a+b) sin(a-b). Note that sin(a+b) sin(a-b) is a product of two sine functions.

We will use the following two formulas:

sin(a+b) = sin a cos b + cos a sin b …(i)

sin(a-b) = sin a cos b – cos a sin b …(ii)

Formula of sin(a+b) sin(a-b)

sin(a+b) sin(a-b) Formula:

 

sin(a+b) sin(a-b) = $\sin^2 a -\sin^2 b$

 

Proof:

 

Using the above formulas

(i)

and

(ii)

, we have

 

sin(a+b) sin(a-b)

 

= (sin a cos b + cos a sin b) (sin a cos b – cos a sin b)

 

= $(\sin a \cos b)^2$ $-(\cos a \sin b)^2$

by the formula

$(x+y)(x-y)$ $=x^2-y^2$

 

= $\sin^2 a \cos^2 b -\cos^2 a \sin^2b$

 

= $\sin^2 a (1-\sin^2 b)$ $-(1-\sin^2 a) \sin^2b$

as we know that

 

$\sin^2 \theta+\cos^2 \theta=1$

 

= $\sin^2 a – \sin^2 a \sin^2 b$ $-\sin^2b+\sin^2 a \sin^2b$

 

= $\sin^2 a -\sin^2 b$

 

 

 

In a similar way as above, we can prove the formula of sin(α+β) sin(α-β) = 

$\sin^2 \alpha -\sin^2 \beta$.

Formula of sin(α+β) sin(α-β)

Prove that sin(α+β) sin(α-β) = 

$\sin^2 \alpha -\sin^2 \beta$

$\cdots (\star)$

 

Proof:

 

Using the above formulas 

(i)

 and 

(ii)

, we have

 

sin(α+β) sin(α-β)

 

= (sin α cos β + cos α sin β) (sin α cos β – cos α sin β)

 

= $(\sin \alpha \cos \beta)^2$ $-(\cos \alpha \sin \beta)^2$ 

by the formula

 

$(x+y)(x-y)$ $=x^2-y^2$

 

= $\sin^2 \alpha \cos^2 \beta -\cos^2 \alpha \sin^2 \beta$

 

= $\sin^2 \alpha (1-\sin^2 \beta)$ $-(1-\sin^2 \alpha) \sin^2 \beta$ 

using the formula of

 

$\sin^2 \theta+\cos^2 \theta=1$

 

= $\sin^2 \alpha – \sin^2 \alpha \sin^2 \beta$ $-\sin^2 \beta +\sin^2 \alpha \sin^2 \beta$

 

= $\sin^2 \alpha -\sin^2 \beta$

 

Example 1: Find the value of $\sin 105^\circ \sin 15^\circ$

Solution:

Let α = $60^\circ$ and β = $45^\circ$in the above formula. So we have

$\sin 105^\circ \sin 15^\circ$

= $\sin(60^\circ+45^\circ) \sin(60^\circ-45^\circ)$

= $\sin^2 60^\circ – \sin^2 45^\circ$ by $(\star)$

= $(\dfrac{\sqrt{3}}{2})^2 – (\dfrac{1}{\sqrt{2}})^2$

= $\dfrac{3}{4} – \dfrac{1}{2}$

= $\dfrac{3-2}{4}$

= $\dfrac{1}{4}$

So the value of $\sin 105^\circ \sin 15^\circ$ is $\dfrac{1}{4}$.

Also Read: 

 

Spread the love

Alternate Text Gọi ngay