[Solved] If a4 + a2b2 + b4 = 8 and a2 + b2 + ab = 4 then ab = &hellip

Given:

a4 + a2b2 + b4 = 8

a2 + b2 + ab = 4

Formula Used:

(a + b)2 = a2 + 2ab + b2

Calculation:

From the given data,

a4 + b4 = 8 – a2b2   …(1)     

a2 + b2 = 4 – ab     …(2)

Squaring both sides of equation (2),

⇒ (a2 + b2) 2 = (4 – ab) 2

⇒ a4 + 2a2b2 + b4 = 16 – 8ab + a2b2

⇒ (a4 + b4) + 2a2b2 = 16 – 8ab + a2b2

⇒ 8 – a2b2 + 2a2b2 = 16 – 8ab + a2b2     …[∵ from equation (1), a4 + b4 = 8 – a2b2]

⇒ 8 + a2b2 = 16 – 8ab + a2b2

⇒ 8 = 16 – 8ab

⇒ 8ab = 8

⇒ ab = 1

∴ The value of ab = 1.

Alternate Text Gọi ngay