[Solved] If log a + log b + log c = 0 then what is the value of abc?
Concept:
Formula of Logarithms:
\({a^b} = x\; \Leftrightarrow lo{g_a}x = b\), here a ≠ 1 and a > 0 and x be any number.
Properties of Logarithms:
-
\({\log _a}a = 1\)
-
\({\log _a}\left( {x.y} \right) = {\log _a}x + {\log _a}y\)
-
\({\log _a}\left( {\frac{x}{y}} \right) = {\log _a}x – {\log _a}y\)
-
\({\log _a}\left( {\frac{1}{x}} \right) = – {\log _a}x\)
-
\({\rm{lo}}{{\rm{g}}_a}{x^p} = p{\rm{lo}}{{\rm{g}}_a}x\)
-
\(lo{g_a}\left( x \right) = \frac{{lo{g_b}\left( x \right)}}{{lo{g_b}\left( a \right)}}\)
Calculation:
Given: log a + log b + log c = 0.
Using the product rule of logarithm, we get,
log a + log b + log c = log (ab) + log c = 0
log (abc) = 0
As we know that, log 1 = 0
⇒ log (abc) = log 1
Cancelling the log on both sides we get,
⇒ abc = 1
Hence, the value of abc is 1.